I'm told that $\overline{\mathbb{C}P^2}$, i.e. $\mathbb{C}P^2$ with reverse orientation, is not a complex manifold. But for example, $\overline{\mathbb{C}}$ is still a complex manifold and biholomorphic to $\mathbb{C}$.

This makes me wonder, if $X$ is complex manifold is there a general criterion for when $\overline{X}$ also has a complex structure? For example, it seems that if $X$ is an affine variety than simply replacing $i$ with $-i$ gives $\overline{X}$ a complex structure and $X, \overline{X}$ are biholomorphic.

**EDIT**: the last claim is wrong; see BCnrd's comments below and Dmitri's example. Also, as explained by Dmitri and BCnrd, $X$ should be taken to have even complex dimension.

Another question: if $X$ and $\overline{X}$ both have complex structures, are they necessarily biholomorphic?
**Edit**: No per Dmitri's answer below.

even-dim'l C-manifolds have an intrinsic orientation determined by C-structure: an orientation of $\mathbf{C}$ endows all C-manifolds with functorial orientation, and changing initial choice affects the orientation on $n$-dimensional C-manifolds by $(-1)^n$. So for even $n$ the question is well-posed. This has nothing to do with changing $i$ and $-i$, and your impression in the affine case is wrong. In any dim., can "twist" structure sheaf by C-conj. to get a new C-manifold (modelled on $\overline{f}(\overline{z})$), but that's a different beast. $\endgroup$ – BCnrd Nov 30 '10 at 23:13