<em id="zlul0"></em><dl id="zlul0"><menu id="zlul0"></menu></dl>

    <em id="zlul0"></em>

      <dl id="zlul0"></dl>
        <div id="zlul0"><tr id="zlul0"><object id="zlul0"></object></tr></div>
        <em id="zlul0"></em>

        <div id="zlul0"><ol id="zlul0"></ol></div>
        5 edited title
        | link

        Maximum number of perfect matchings in a graph of genus $g$ balanced $k$-partite graph

        4 added 271 characters in body
        source | link

        What is the maximum number of perfect matchings a genus $g$ balanced $k$-partite graph (number of vertices for each color in all possible $k$-colorings is within a difference of $1$) can have? I am particularly interested in $k=2$.

        For planar balanced bipartite graphs (each color has to have same number of vertices assigned) the number of perfect matchings is $2^{O(n)}$ while for genus $\Omega(n^2)$ we can have $2^{\Omega(n\log n)}$. So is maximum number of perfect matchings $2^{O(n\log g)}$ for $k=2$?

        What is the maximum number of perfect matchings a genus $g$ balanced $k$-partite graph (number of vertices for each color in all possible $k$-colorings is within a difference of $1$) can have? I am particularly interested in $k=2$.

        What is the maximum number of perfect matchings a genus $g$ balanced $k$-partite graph (number of vertices for each color in all possible $k$-colorings is within a difference of $1$) can have? I am particularly interested in $k=2$.

        For planar balanced bipartite graphs (each color has to have same number of vertices assigned) the number of perfect matchings is $2^{O(n)}$ while for genus $\Omega(n^2)$ we can have $2^{\Omega(n\log n)}$. So is maximum number of perfect matchings $2^{O(n\log g)}$ for $k=2$?

        3 added 81 characters in body
        source | link

        What is the maximum number of perfect matchings a genus $g$ balanced $k$-partite graph (equal numbernumber of vertices for each color in all possible $k$-colorings) is within a difference of genus $g$$1$) can have? I am particularly interested in $k=2$.

        What is the maximum number of perfect matchings a balanced $k$-partite graph (equal number of vertices for each color in all possible $k$-colorings) of genus $g$ can have? I am particularly interested in $k=2$.

        What is the maximum number of perfect matchings a genus $g$ balanced $k$-partite graph (number of vertices for each color in all possible $k$-colorings is within a difference of $1$) can have? I am particularly interested in $k=2$.

        2 added 81 characters in body
        source | link
        1
        source | link
        山西福彩快乐十分钟
          <em id="zlul0"></em><dl id="zlul0"><menu id="zlul0"></menu></dl>

          <em id="zlul0"></em>

            <dl id="zlul0"></dl>
              <div id="zlul0"><tr id="zlul0"><object id="zlul0"></object></tr></div>
              <em id="zlul0"></em>

              <div id="zlul0"><ol id="zlul0"></ol></div>
                <em id="zlul0"></em><dl id="zlul0"><menu id="zlul0"></menu></dl>

                <em id="zlul0"></em>

                  <dl id="zlul0"></dl>
                    <div id="zlul0"><tr id="zlul0"><object id="zlul0"></object></tr></div>
                    <em id="zlul0"></em>

                    <div id="zlul0"><ol id="zlul0"></ol></div>
                    悟空分期app下载 pk10技巧分享 北京塞车计划网全天更新 时时彩怎么买什么最稳 南昌站街女哪里多 重庆时时彩2期4码计划 日本美女胸罩脱落 北京快车pk10官方网站 昆明沐足包吹 足彩单双玩法